front cover of Model Predictive Control for Microgrids
Model Predictive Control for Microgrids
From power electronic converters to energy management
Jiefeng Hu
The Institution of Engineering and Technology, 2021
Microgrids have emerged as a promising solution for accommodating the integration of renewable energy resources. But the intermittency of renewable generation is posing challenges such as voltage/frequency fluctuations, and grid stability issues in grid-connected modes. Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. It has been in use for chemical plants and in oil refineries since the 1980s, but in recent years has been deployed for power systems and electronics as well.
[more]

front cover of Variability, Scalability and Stability of Microgrids
Variability, Scalability and Stability of Microgrids
S.M. Muyeen
The Institution of Engineering and Technology, 2019
A microgrid is a small network of electricity users with a local source of supply that is usually attached to a larger grid but can function independently. The interconnection of small scale generating units, such as PV and wind turbines, and energy storage systems, such as batteries, to a low voltage distribution grid involves three major challenges: variability, scalability, and stability. It must keep delivering reliable and stable power also when changing, or repairing, any component, or under varying wind and solar conditions. It also must be able to accept additional units, i.e. be scalable. This reference discusses these three challenges facing engineers and researchers in the field of power systems, covering topics such as demand side energy management, transactive energy, optimizing and sizing of microgrid components. Case studies and results provide illustrative examples in each chapter.
[more]


Send via email Share on Facebook Share on Twitter